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Abstract

Mapping the human brain is one of the great scientific challenges of the 21st

century. Brain network analysis is an effective technique based on graph theory

that is widely used to investigate network patterns in the human brain. Currently,

mapping an individual brain network using a single image has been a hotspot in the

field of brain science; techniques, such as the Kullback-Leibler (KL) method, have

applications in structural Magnetic Resonance (MR) imaging. However,

maintaining an image’s intensity, shape, texture and gradient information during
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feature extraction is very challenging. In this study, we propose a novel method for

individual-level network construction based on the high-resolution Brainnetome

Atlas, which shows 246 brain regions. Principal components (PCs) were obtained

for each brain region using principal component analysis (PCA) for feature

extraction. Individual brain networks were followed and used to construct the PC

similarity measurement based on the mutual information (MI) method. To evaluate

the robustness of the proposed method, three independent experiments were carried

out. In the first, 34 healthy subjects underwent two Carbon 11-labeled Pittsburgh

compound B Positron emission tomography (11C-PiB PET) scans; in the second,

32 healthy subjects underwent two structural MRI scans; and in the last, 10

Alzheimer's disease (AD) subjects and 10Healthy Control (HC) subjects underwent

11C-PiB PET scans. For each subject, network metrics including clustering

coefficient, path length, small-world coefficient, efficiency and node betweenness

centrality were calculated. The results suggested that both the individual PET and

structural MRI networks exhibited a good small-word property, and the variances

within subjects was also quite small in all metrics, The average value of Coefficient

of variation (CV) map was 0.33 and 0.32 for PiB PET and MR images

respectively, and intra-class correlation coefficients (ICC) range from approxi-

mately 0.4 to 0.7, indicating that the new method was well adapted to the subjects.

The results of intra-class correlation coefficients from the test-retest experiment

were consistent with previous research employing KL divergence, but with low

computational complexity. Further, differences between AD subjects and HC

subjects can be observed in network metrics. The method proposed herein provides

a new perspective for investigating individual brain connectivity; it would enable

neuroscientists to further understand the functions of the human brain.

Keywords: Biomedical engineering, Neuroscience

1. Introduction

The human brain is one of the most complicated network systems in the world. Its

complexity lies in both structure and function; it is an organic whole composed of

about 1011 neurons and 1015 synapses [1]. Although the structure and function of a

single neuron is relatively simple, multiple clusters of neurons and brain regions

are interconnected to form a highly complex network [2]. Brain networking is one

of the most important areas of neuroscience, and has gained attention world-wide

as mapping the human brain has become one of the greatest scientific challenges of

the 21st century [3].

Graph theory analytical methods have been widely used to analyze complex brain

networks, for example to map brain network characteristics that change greatly

across different cognitive functions and behaviors. In the past ten years, brain

network analytical method has been extended to the study of neuropsychiatric brain
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diseases, such as Alzheimer's disease (AD), schizophrenia and depression etc. For

example, several studies used functional magnetic resonance imaging (fMRI) to

compare the inter-regional functional connectivity between healthy and AD

populations and found significantly lower clustering coefficients and path lengths

in AD patients [4, 5]. A recent study from our lab employed Carbon 11-labeled

Pittsburgh compound B Positron emission tomography (11C-PiB PET), one of the

latest clinical technologies that detects β-amyloid plaque deposition, to reveal

significant changes in the left cuneus, right caudate nucleus and left superior

frontal gyrus in AD patients [6]. In addition, direct evidence from structural MRI

data suggested that the coordinated patterns of cortical morphology are widely

altered in AD patients [7].

Although graph theory analytical method has been successfully used to analyze

various neural images, there are clear limitations of existing analytical methods.

One specific limitation is that existing constructing methods, such as Pearson

correlations and partial correlations, rely heavily on time series data. Networks

made in this fashion are efficient for imaging data with a full time series, from

scans such as EEG and fMRI. However, they are not efficient for imaging data

with only one time point, such as structural Magnetic Resonance Imaging (MRI)

and PET data, etc. As a result, brain networks based on structural MRI and PET

data are often constructed with a set of subjects rather than one single subject [6, 8,

9, 10], which cannot explore individual brain topological organization and

investigate its brain alterations or abnormalities.

More recently, in order to map an individual brain network, several investigations

have been proposed. For example, Tijms et al. proposed a method to construct

individual morphological networks for structural MR images. They divided the

whole brain morphological networks into about 7000 nodes. Each node was

composed of 3 × 3 × 3 (27) voxels. Then the correlation between each two nodes

was investigated [11]. Although this method realized network construction for an

individual brain, the shortcoming of this method is obvious: the rigid extraction of

those nodes might not optimally correspond to functionally/anatomically

homogeneous regions of the brain, especially when one node was across different

brain regions. To overcome above shortcoming, Kong and Wang et al. proposed

the Kullback-Leibler (KL) divergence method to measure individual morphologi-

cal relationships of cortical regions by calculating the KL divergence between

nodes [12, 13]. This method used atlas to extract brain regions, and guaranteed

functionally/anatomically homogeneity for each node. However, limitations still

exist in KL method. One specific limitation is that KL method only calculated

voxel intensity, and not considered deeper features, such as shape, texture and

gradient features, which might not really reflect morphological organization for

human brains. In addition, as one of the most time-consuming steps in network
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construction, KL method took long time in calculating the connection matrix,

which cannot meet clinical requirements [12, 13].

Therefore, to overcome above limitations of KL method, we propose a novel

method for constructing individual brain networks by combining principal

components analysis (PCA) with mutual information (MI), named PCAMI

method. In this method, PCA technique was used to extract deeper features of

each node. Brain network was constructed by analyzing mutual information

between principal components (PC) amongst different brain regions. This article

therefore is focused on two main objectives: (1) investigating whether PCAMI

method is useful and robust for imaging data with only one time point, including

structural MRI and PET data; and (2) validating whether PCAMI method can

decrease computational complexity. To achieve above objectives, KL method was

chosen and compared with PCAMI method.

2. Materials and methods

2.1. Participants

To validate the new method, three independent datasets selected from the ADNI

database (https://ida.loni.usc.edu) were used. The first dataset included 34 Carbon

11-labeled Pittsburgh compound B Positron emission tomography (11C-PiB PET)

images from health control subjects, and two PiB PET scans from each participant

taken about 6 months apart. The spatial resolution of the PET scanner is 168 × 168

× 148 matrices with a size of 2.0 × 2.0 × 1.5 mm.

The second dataset included 32 structural MRI images from health control

subjects, with two structural MRI scans from each participant taken about 1 month

apart. The spatial resolution of the structural MRI is 166 × 256 × 256 matrices with

a size of 1.2 × 1.0 × 1.0 mm. Detailed information about the magnetic resonance

acquisition procedures is available at the ADNI website.

The third dataset included 20 11C-PiB PET images from 10 Alzheimer's disease

and 10 health control subjects. The spatial resolution of the PET scanner is 168 ×

168 × 148 matrices with a size of 2.0 × 2.0 × 1.5 mm.

The clinical and demographic information of the three datasets are summarized in

Table 1. The statistical results show that subjects did not change significantly

between the two scans in the first two datasets. More information on three datasets,

including ADNI number, gender information, scan times, can be found in

Supplementary materials.
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2.2. The workflow of PCAMI method

In PCAMI method for constructing individual-level networks, there are a total of

five steps: image preprocessing, extraction of the brain regions by priori atlas,

feature extraction based on principal components analysis, and individual-level

brain network construction based on mutual information and network analysis.

Fig. 1 shows the workflow of PCAMI method.

2.2.1. Image preprocessing

All raw images of PiB PET and MR images were in the Digital Imaging and

Communications in Medicine (DICOM) format. DCM2NII (https://www.nitrc.org/

projects/dcm2nii/) was used to convert images from the DICOM to NIfTI format.

The transformed images were preprocessed using Statistical Parametric Mapping 8

(SPM8) implemented in Matlab2014a.

2.2.1.1. (a) PiB PET image preprocessing

First, each PET image was spatially normalized to the Montreal Neurological

Institute (MNI, McGill University, Montreal, Canada) space using the ‘Normalize:

Estimate and Write’ function. In this step, the individual images were spatially

warped to a reference PET template from SPM software. This spatial warping is an

automated procedure that uses affine transformation with 12 parameters. Then, the

Table 1. The clinical and demographic information of the three datasets.

Data Gender (F/M) Age (years) Weight (kg) MMSE CDR(n)

PET (TRT) Scan1 20F 14M 77.6 ± 6.2 71.7 ± 13.9 29.4 ± 1.2 0(30), 0.5(3), 1(1)

Scan2 20F 14M 78.9 ± 6.1 72.5 ± 11.3 29.1 ± 1.2 0(29), 0.5(4), 1(1)

p 1a 0.40b 0.78b 0.37b 0.79b

structural MRI Scan1 19F 13M 75.8 ± 6.7 77.6 ± 15.4 - -

Scan2 19F 13M 76.2 ± 6.8 77.2 ± 17.1 - -

p 1a 0.83b 0.91b - -

PET
(Comparison)

HC 6F 4M 76.3 ± 8.4 76.4 ± 9.4 30 ± 0 0(10)

AD 5F 5M 74.7 ± 8.6 71.0 ± 11.2 17.8 ± 6.3 0.5(3),1(4),2(3)

p 0.65a 0.69b 0.28b <0.001b <0.001b

Note: Data is presented as the mean ± standard deviation.

F, females; M, males; n refers to the number of samples. MMSE, Mini mental state examination; CDR,

Clinical Dementia Rating.

− structural MRI dataset did not provide the MMSE or CDR.
a P-value obtained by the Pearson chi-square test.
b P-value obtained by the two-sample two-tailed t-test.
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normalized images were smoothed by convolution using an isotropic Gaussian

kernel with 8 × 8 × 8 mm3 as the FWHM to increase signal to noise ratio for

statistical analysis. Finally, the images were transferred to gray level images with a

grayscale of [0,255].

2.2.1.2. (b) MR image preprocessing

First, the native MR images were registered into stereotaxic space by applying

rigid-body transformations. Second, the registered images were segmented into

gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) tissue

probability maps with priori tissue maps as a reference through a unified

segmentation algorithm. The density map was provided by International

Consortium for Brain Mapping (ICBM), which provided the probability

distribution of GM, WM and CSF in standard spatial 2 × 2 × 2 mm3. Then, the

GM images were spatially normalized to the standard MNI space. Finally, the

normalized GM images were smoothed with 5 × 5 × 5 mm3 FWHM, as defined in

the SPM8 manual, to improve the images' noise-signal ratio in order to reducing

the impact of noise on the results.

2.2.2. Extracting the brain regions using priori atlas

According to graph theory, a network consists of vertices and edges that connect a

sequence of vertices. Therefore, to construct the brain network, the first step is

[(Fig._1)TD$FIG]

Fig. 1. The workflow of PCAMI method proposed in this study. (A) PiB PET image preprocessing; (B)

MR image preprocessing; (C) brain region extraction using priori atlas Brainnetome; (D) Principal

components analysis for each region; (E) Similarity measurement based on mutual information between

components; (F) MI-based connectivity matrix for each subject; (G) Binary matrix transformed from MI

matrix.
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defining the network nodes. In this study, a high-resolution Brainnetome Atlas was

chosen to define network nodes. The Brainnetome Atlas was developed by Fan

et al. in 2016 [14]; it includes 210 cortical and 36 subcortical regions, and it

contains information on both anatomical and functional connections. Hence all of

the PiB PET and MR images in this study were linear registered by the

Brainnetome Atlas with a same size as 91 * 109 * 91 pixels, and were finally

divided into 246 nodes.

2.2.3. Feature extraction based on principal components analysis

After extracting the brain regions, principal components analysis (PCA) was

performed for feature reduction and de-correlation. Compared to traditional feature

extraction methods used in clinics, such as voxel values and standardized uptake

values (SUV), PCA methods can successfully address three issues existing in

traditional methods by defining image details. First, each brain region contains

hundreds of voxels in high dimensions. These voxels are usually relatively small,

which leads to the curse of dimensionality. Second, because the voxels in a brain

region are highly correlated, it is necessary to conduct de-correlation. Third, not

only intensity information, but also shape, texture and gradient information from

the image are important. PCA, a popular statistical procedure in data analysis,

transforms the high dimensional data to a new coordinate system in lower

dimensional space through an orthogonal transformation. The data in the new

coordinate system represents the principal components (PCs) and features of the

original data. Therefore, PCA method can effectively identify the most important

features and structures in the image, such as edges and textures, while PCA method

can remove noise and redundancy, and reduce the original image data

dimensionality simultaneously [15, 16].

In this study, PCA was performed for each area separately after extracting the brain

regions, and PCs of each area were obtained. Six detailed steps of this process can

be explained as follows:

(a) The brain regions of all subjects were organized into matrix X, with n rows and

m columns, where n represents the number of the subjects, m represents the

number of the brain regions. Because Brainnetome Atlas template was used in

this study, m is equal to 246. xij is a vector representing the feature dimensions

of the j-th brain region of the i-th subject.

X ¼
x11 x12 ⋯ x1m
x21 x22 ⋯ x2m
⋮ ⋮ ⋮ ⋮
xn1 xn2 ⋯ xnm

2
664

3
775 ¼ x1; x2; ⋯ xm½ �
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xi ¼ x1i x2i ⋯ xni½ �T ; i ¼ 1; 2; : : : m

(b) The matrix X is de-mean normalized by columns through subtraction of the

mean value of each row, where X0 represents the de-mean normalized X.

X0 ¼
x1 � mean x1ð Þ
x2 � mean x2ð Þ

⋮
xm � mean xmð Þ

2
664

3
775

T

(c) Computing the covariance matrix of the de-mean normalized X.

(d) Computing the eigenvalues, D, and the corresponding eigenvectors, V, of the

covariance matrix.

(e) Rearranging the eigenvectors from large to small according to the

corresponding eigenvalues.

(f) Multiplying the eigenvectors by X0 to obtain the PCs.

After extracting the brain regions, PCA was performed for both the PET and MR

images in this study. The mathematical models of PCA showed that the number of

principal components in each brain region was equal to the number of subjects

minus 1 [17]. As a result, from PCA of the PiB PET data, 33 principal components

(PCs) were obtained for each brain region, representing the most relevant image

information (intensity, texture, and shape). Similarly, for structural MRI data, each

brain region contained 31 PCs, which represent the most relevant image

information of structural MR images.

2.2.4. Brain network construction based on mutual information
method

Mutual information (MI) was proposed in this step to define the inter-regional

relations between nodes. In information theory, the amount of information

provided by an event should be a function of the probability that the event occurs,

and can be defined as follows:

I xð Þ ¼ f p xð Þð Þ

where p(x) represents the probability of an event and I(x) represents the amount of

information provided by the event. Mathematically, the relationship between I(x)

and p(x) has been strictly defined as follows:

I xð Þ ¼ �logp xð Þ

The marginal entropy and joint entropy were defined as follows, represent the

mathematical expectation ofI xð Þ:
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H xð Þ ¼ �∑
x
p xð Þlogp xð Þ

H x; yð Þ ¼ �∑
x
∑
y
p x; yð Þlogp x; yð Þ

Then, the mutual information of two random variables is a measure of the mutual

dependence between the two variables. More specifically, mutual information is

used to measure the amount of information obtained about one random variable

through the other random variable, which can be defined as follows:

MI x; yð Þ ¼ H xð Þ þ H yð Þ � H x; yð Þ

Namely,

MI x; yð Þ ¼ �∑
x
p xð Þlogp xð Þ �∑

y
p yð Þlogp yð Þ þ∑

x
∑
y
p x; yð Þlogp x; yð Þ

To calculate the probability density functions p(x), kernel density estimate (KDE)

with a normal kernel was performed; this is a nonparametric method for estimating

probability densities [18].

In this step, similarity measurement for mutual information between PCs was

performed, giving definitive connection strength between the brain regions. Three

sub-steps were used. In the first, PCs of each two different regions were denoted as

x and y; then probability density functions p (x) and p (y) were calculated based on

PCs x and y respectively; and finally MI(x,y) was calculated by definition formula.

As a result, a size of 246*246 MI-based connectivity matrix was achieved for each

subject.

2.2.5. Network analysis

Then, the sparsity threshold method was applied to binarized the networks.

Because there is no definitive way to select a single threshold, a wide range of

sparsity thresholds were applied and the network parameters were calculated at

each threshold. Using a previous study, a sparsity threshold range of 6% − 40%

was chosen with an interval of 1% [6, 19, 20].

After defining the threshold range, the MI matrix was transformed into a binary

matrix that was then described as a network. In the binary matrix, an element of 1

indicates that there is a connection between two nodes, and 0 indicates that there is

no connection, as shown in Fig. 1(F), (G).

In this study, the following network metrics were calculated: clustering coefficient

(C), characteristic path length (L), gamma, lambda, small-world coefficient

(sigma), local efficiency (localE), global efficiency (globalE), and node

betweenness centrality (BC). All parameters were calculated using the open

toolkit GRETNA (https://www.nitrc.org/projects/gretna/) [21] and The Brain

Connectivity Toolbox (BCT, http://www.nitrc.org/projects/bct/) [22].
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In the graph theory, the C of a network is as a measure of the degree to which

nodes in a graph tend to cluster together [23]. The L is as a measure of the

efficiency of the information or the mass transport of a network [8]. A small-world

network should meet the following criteria: gamma >> 1, lambda≈ 1 and sigma >

1 [24, 25]. The globalE and localE are as the measure of how efficiently it

exchanges information in entire network and local network, respectively [26]. BC

is typically used to determine the number of candidate hubs in a network [27].

According to previous studies, nodes with bi (equal to BC/averaged BC) values

greater than the averaged betweenness value are considered as candidate hubs of

the network.

2.3. Evaluation of PCAMI method

2.3.1. Coefficient of variation (CV)

After obtaining the MI-based connectivity matrices, the coefficient of variation

across the subjects were calculated to evaluate the consistency. The coefficient of

variation (CV), also known as relative standard deviation (RSD), is an important

statistic for measuring the variability of the observed values in the data, and can be

defined as the ratio of the standard deviation to the mean value:

CV ¼ σ
μ
� 100%

where σ represents the standard deviation of the population, μ represents the mean

value of the population. In this study, referring to previous literature [12, 13], we

assumed that the difference between HCs’ brains were small in both structural MRI

and PET images. Hence, CV across subjects was used to measure robustness of

PCAMI Method [13].

2.3.2. Test–retest (TRT) reliability analysis

A test-retest (TRT) reliability analysis was performed to evaluate whether the new

method proposed in this study is repeaTable Specifically, intra-class correlation

coefficients (ICC) were calculated, which represents the ratio of between-subject

variance to total variance, defined as follows:

ICC ¼ δ2between
δ2between þ δ2within

where δ2between and δ2within represents total variance that is “between groups” and

“within groups”. In general, an ICC value below 0.4 is considered poor

reliability, 0.4–0.58 is considered fair, 0.59–0.75 is considered good reliability,

and greater than 0.75 is considered excellent [28, 29]. In this study, ICC was

calculated to perform the test-retest reliability between the first and second scans
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based on MI-based connectivity matrices without binarization for both PET and

MRI images.

2.4. Comparison of PCAMI method and present methods

In order to investigate whether PCAMI method is viable, direct comparison with

the KL divergence method was performed. Differences between the network

metrics from the two methods, such as C, L, gamma, lambda, sigma, localE,

globalE were calculated. Two-sample T-Test was used to analyze statistical

differences of PCAMI method and KL method.

Computing consuming for both methods were also compared in the computing

platform Windows 7 64-bit OS with an 8 G memory and quad-core Intel®

processors that operates at 3.2 GHz.

2.5. Comparison of network metrics between AD and HC
subjects by using PCAMI method

To further demonstrate the potential clinical values of the proposed method, we

used a dataset including 20 11C-PiB PET images from 10 Alzheimer's disease and

10 health control subjects. The individual brain network for each subject based on

the proposed method was set up and the network parameters were calculated,

respectively. Finally, all network metrics between Alzheimer's disease and health

control subjects were compared.

3. Results

3.1. CV Map across subjects

Fig. 2 shows the resulting CV map for the first scan of PiB PET (Fig. 2A) and MR

images (Fig. 2B). As can be observed across subjects, the CV map exhibited small

variation throughout the brain. The average value of CV map was 0.33 and 0.32 for

PiB PET and MR images, respectively.

[(Fig._2)TD$FIG]

Fig. 2. (A) CV map across the subjects for the first scan of PiB PET data determined using the method

proposed; (B) CV map for the first scan of structural MRI data determined using the method proposed.
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3.2. Individual network metrics of two scans in PiB PET and
MR images

In this study, the network metrics C, L, gamma, lambda and sigma were generated

for each subject. Fig. 3 shows the mean values and standard deviations of each

scan across subjects determined using the method proposed in this study.

Compared with random networks, both the individual PiB PET and structural MRI

networks exhibited larger values in the clustering coefficient and approximately

equal values in path length.

Over the entire threshold range of 6% − 40%, both the PiB PET and structural MRI

networks fulfilled gamma >> 1, which satisfied the small-world network criterion.

[(Fig._3)TD$FIG]

Fig. 3. Network metrics of the first scan data from PiB PET and structural MRI scans by using the new

method proposed in this study. The x-axis represents the sparsity threshold ranges from 6% to 40% with

1% steps. The y-axis represents the values of network metrics. The error bars indicate the standard

deviation within subjects. (A) Network metrics of PiB PET images; (B) Network metrics of structural

MRI images.
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Table 2 shows the minimum, maximum and mean values of gamma, lambda and

sigma across the entire thresholds. Specifically, the subjects demonstrate a

favorable small-world property in both the PiB PET and structural MRI networks

when using PCAMI method proposed in this study. These findings are consistent

with previous research showing that the human brain is a small-world network.

Further, the variances within each subject are quite small in all metrics (Fig. 3).

This suggests that the proposed method is subjectively adaptive.

3.3. Test-retest reliability of the individual network

A TRT reliability analysis was performed to assess the robustness of the method

proposed in the present study. Fig. 4 shows the average values and standard

deviations of the ICC of network metrics across the threshold range. Overall, the

ICCs of PiB PET and structural MRI networks range from approximately 0.4 to

0.7. For example, across the threshold range, the mean ICC value of the clustering

coefficient and path length of the PiB PET network was 0.59 and 0.62,

respectively. These TRT results indicate that the method for constructing

individual PiB PET and structural MRI networks achieved fair or excellent

reliability.

Table 2. The minimum, maximum and mean values of gamma, lambda and sigma

across the entire thresholds.

PiB PET structural MRI

gamma lambda sigma gamma lambda sigma

minimum 1.23 1.00 1.23 1.21 1.00 1.21

maximum 2.63 1.19 2.21 2.20 1.17 1.88

mean 1.58 1.05 1.49 1.47 1.04 1.40

[(Fig._4)TD$FIG]

Fig. 4. The mean ICCs of network metrics. The error bars represent the standard deviation across the

threshold range.
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3.4. Regression analysis for the two scans

When assessing a newly proposed method, it is important that it can obtain

consistent results between two scans conducted at two different time points.

Therefore, linear regression analysis for the two scans was carried out to

investigate the consistence of network metrics. Figs. 5 and 6 show the linear

regression results of the PiB PET and structural MRI networks, respectively. To

evaluate the performance of the regression analysis, the R2 statistic and p value

were calculated, as these are regarded as two of the most important statistical

indicators in regression analysis. As expected, for all metrics, the results of R2

statistic were about 0.99 and p values were below 10−3, demonstrating that the two

scans exhibited an excellent linear relationship. Specifically, using the network

metrics of the first scan, the results of the second scan can be reliably predicted,

suggesting that the method for constructing individual PiB PET and structural MRI

networks can achieve extremely consistent results across at least two scans.

3.5. Hubs of the individual PiB PET and structural MRI
Networks

In order to determine the hubs, a fixed sparsity of 18% was chosen according to our

previous study [6]. Several hub nodes were identified in the PiB PET and structural

MRI network at the fixed sparsity of 18% by calculating the network parameter of

betweenness centrality (nodes with normalized betweenness centrality values with

greater than average betweenness value plus one standard deviation). Fig. 7 shows

the hub nodes in the sagittal view. Using the PiB PET images, 41 and 36 hub nodes

were identified for the first and second scan, respectively. Among those hub nodes,

12 were found in both scans, including the insular gyrus, medio-ventral occipital

cortex, lateral occipital cortex, amygdala, hippocampus and thalamus. Table 3 lists

the 12 hub regions and their normalized bi values. Using the structural MRI

[(Fig._5)TD$FIG]

Fig. 5. Linear regression analysis of the PiB PET network metrics. (A) clustering coefficient; (B) path

length; (C) small-world coefficient; (D) local efficiency.
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images, 38 and 39 hub nodes were identified for the first and second scans,

respectively. 16 hubs were identified in both scans, including the orbital gyrus,

fusiform gyrus, precuneus, insular gyrus, cingulate gyrus, medio-ventral occipital

cortex, lateral occipital cortex, amygdala, hippocampus, basal ganglia and

thalamus, as reported in Table 4. The hubs found in both PiB PET and structural

MRI networks have been reported at least once in previous studies.

[(Fig._6)TD$FIG]

Fig. 6. Linear regression analysis of the structural MRI network metrics. (A) clustering coefficient; (B)

path length; (C) small-world coefficient; (D) local efficiency.

[(Fig._7)TD$FIG]

Fig. 7. Network hubs in PiB PET and structural MRI networks. Marker size denotes hub importance.

(A) The identified hubs in the first PiB PET scan images; (B) Hubs identified in the second PiB PET

scan images; (C) The hubs identified in both PiB PET scan images; (D) Hubs identified in the first

structural MRI scan images; (E) Hubs identified in the second structural MRI scan images; (F) The hubs

identified in the both structural MRI scan images. The hub nodes were visualized using the BrainNet

Viewer package [30].
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Table 3. Hubs of PiB PET data identified in both scans.

region no. region bi MNI coordinates (mm)

scan1 scan2 x y z

166 INS_R_6_2 1.43 1.25 33 14 -13

194 MVOcC_R_5_3 1.75 1.38 8 -90 12

205 LOcC_L_4_4 1.46 1.29 -30 -88 -12

209 LOcC_L_2_2 1.46 1.73 -22 -77 36

210 LOcC_R_2_2 1.43 1.41 29 -75 36

212 Amyg_R_2_1 1.28 1.28 19 -2 -19

215 Hipp_L_2_1 1.38 1.31 -22 -14 -19

232 Tha_R_8_1 1.72 1.66 7 -11 6

236 Tha_R_8_3 1.22 1.50 18 -22 3

240 Tha_R_8_5 1.27 1.29 15 -25 6

242 Tha_R_8_6 1.28 1.51 13 -27 8

244 Tha_R_8_7 1.31 1.42 10 -14 14

Table 4. Hubs of structural MRI data identified in both scans.

region no. region bi MNI coordinates (mm)

scan1 scan2 x y z

49 OrG_L_6_5 1.27 1.73 -10 18 -19

104 FuG_R_3_1 1.55 1.52 33 -15 -34

149 PCun_L_4_2 1.25 1.34 -8 -47 57

165 INS_L_6_2 1.30 1.25 -32 14 -13

187 CG_L_7_7 1.45 1.33 -4 39 -2

188 CG_R_7_7 1.29 1.31 5 41 6

198 MVOcC_R_5_5 1.28 1.28 15 -63 12

200 LOcC_R_4_1 1.33 1.70 34 -86 11

202 LOcC_R_4_2 1.60 1.74 48 -70 -1

209 LOcC_L_2_2 1.40 1.95 -22 -77 36

213 Amyg_L_2_2 1.55 1.30 -27 -4 -20

218 Hipp_R_2_2 1.37 1.43 29 -27 -10

219 BG_L_6_1 1.30 1.28 -12 14 0

223 BG_L_6_3 1.39 1.27 -17 3 -9

224 BG_R_6_3 1.24 1.35 15 8 -9

231 Tha_L_8_1 1.66 1.29 -7 -12 5
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3.6. Comparison between PCAMI method and present methods

The difference between network metrics of the PCAMI method and KL divergence

method can be seen in Fig. 8. The differences between the metrics from the two

methods were in an acceptable range. For instance, the differences between sigma

values were lower than 0.5 across the entire threshold, indicating that the new

framework proposed is feasible for constructing individual PiB PET and structural

MRI networks, and has the potential to describe the human brain network with

small-world and high-efficiency characteristics.

Table 5 shows the results of statistical differences in network metrics between two

methods. All parameters of network metrics show significant statistical difference

(p < 0.05)except sigma values in four scans and gamma value in the first PiB PET

scan. That means PCAMI method has essential distinction for constructing brain

network in comparison to KL method.

To evaluate the robustness of the method, all of the PiB PET and structural MRI

data were manually selected to ensure two PET or structural MRI scans were

performed for each participant, and to ensure that two evaluation experiments,

including CV mapping across the subjects and ICC of the network metrics, were

performed and compared with the KL method.

Fig. 9 shows the results of CV mapping of the PiB PET and structural MRI

networks using the KL divergence. Compared with the KL method, the CV map

obtained from the present method demonstrated relatively low CV values for both

the PiB PET and structural MRI networks. Specifically, for the PiB PET network,

the average value of the CV map was 0.33 with the present method, while it was a

much higher 0.56 using KL method. For the structural MRI network, the average

value of the CV map was 0.32 with the present method and similarly, was 0.37

using the KL method. These findings suggest that the present method exhibits

considerably better consistency across participants.

[(Fig._8)TD$FIG]

Fig. 8. The network metric differences between the present method and the KL divergence method.
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The comparison of ICCs between the present method and KL divergence method is

shown in Fig. 10. Overall, the ICC results from the present method were similar to the

results that were obtained usingKL divergencemethod. For the PiB PET network, the

present method demonstrated better ICC values in path length and global efficiency.

For the structural MRI network, the present method demonstrated a better ICC values

in path length, gamma, sigma, global efficiency and local efficiency.

In summary, the new method proposed in this study exhibited an acceptable

robustness when compared with the KL method, suggesting its potential to serve as

a method for brain network construction at an individual level.

Furthermore, the time requirements for the present method and KL method were

recorded and compared. Using the KL method, it took 61 minutes for individual

network construction per participant. However, in the same operating environment,

only 23 minutes were needed for each participant using the present method, which

suggests lower computational complexity compared to the KL method. This time

efficiency is mainly due to PCA reducing the dimension of the original image data.

3.7. Comparison of network metrics between AD and HC
subjects by using PCAMI method

Fig. 11 shows comparison results of network metrics between AD and HC groups

at different sparsity from 6% to 40%. It can be found that the network metrics of C,

Table 5. Statistical differences of network metrics between PCAMI method and

KL method.

P C L gamma lambda sigma globalE localE

First_structual MRI scan 0 0.0042 0.0092 0 0.1083a 0.0041 0

First_PIB PET scan 0 0.0013 0.4319a 0 0.3435a 0.001 0

Second_structual MRI scan 0 0.0035 0.0107 0 0.1543a 0.0031 0

Second_PIB PET scan 0 0.0017 0.516 0 0.2268a 0.0014 0

arepresents haven't a statistically significant difference (p < 0.05).

[(Fig._9)TD$FIG]

Fig. 9. (A) CV map across the subjects for the first scan of PiB PET data constructed using the KL

method; (B) CV map for the first scan of structural MRI data constructed using the KL method.
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[(Fig._10)TD$FIG]

Fig. 10. Comparison of ICCs between the present method and KL divergence method.

[(Fig._11)TD$FIG]

Fig. 11. Comparisons of network metrics between AD and HC groups based on 11C-PiB PET images.

(A) C, clustering coefficient; (B) L, characteristic path length; (C) localE, local efficiency;(D) globalE,

global efficiency; (E) gamma parameters; (F) lambda parameters; (G) sigma parameters. The x-axis

represents the sparsity threshold ranges from 6% to 40% with 1% steps. The y-axis represents the values

of network metrics. The red curve represents the average of corresponding network parameters across

subjects in AD groups and the blue curve represents the average of corresponding network parameters

across subjects in HC groups. Asterisks (*) show significant differences (two-sample two-tailed t-test, p

< 0.05).
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localE, gamma were lower in the AD group than in the HC group. Especially, a

decrease in sigma was obvious in the AD group, indicating the loss of small-world

characteristics was observed in the AD group compared to the HC group.

Significant differences for network metrics were assessed using two-sample two-

tailed t-test (p < 0.05). Significant differences in C, localE, gamma, and sigma

were found at the corresponding sparsity thresholds between AD and HC groups,

but not be found in L, globalE and lambda (Fig. 11).

4. Discussion

Mapping individual brain networks has been a research hotspot in recent years.

Although there have been a few studies that have proposed methods for

constructing single-subject morphological brain networks, such as KL method,

limitations still exist. Two limitations of KL method are proposed from previous

studies: (1) KL method only calculated voxel intensity, and not considered deeper

features, such as shape, texture and gradient features, which might not really reflect

morphological organization for human brains; (2) the computing consuming of KL

method cannot meet clinical requirements. This paper proposed a novel PCAMI

method to solve above limitations. This is the first time that a novel method for

mapping individual brain networks based on PCA for feature extraction and mutual

information for individual-level network construction has been proposed and

applied to PiB PET and structural MR images according to our knowledge.

4.1. Innovative aspects of PCAMI method

PCA and MI are two innovations in PCAMI method to solve limitations of existing

single-subject morphological brain networks constructing methods.

First, in most previous studies, similarity measurements between regions were

based only on voxel intensity of the images [9, 10, 31, 32]. However, maintaining

the shape, texture and gradient information of the image during feature extraction

is a great challenge. In this study, we innovatively used the PCA method for image

feature extraction, then the brain network was constructed based on these features,

rather than voxel intensity. As a statistical procedure that uses an orthogonal

transformation to convert original data into a set of linearly uncorrelated variables

called principal components, PCA function is mostly used as a tool in exploratory

data analysis. In this study, PCs well obtained the most relevant shape, texture and

gradient information of structural MRI and PET images besides voxel intensity.

Second, MI was proposed for defining the inter-regional relations between nodes

after feature extraction. Compared to traditional correlation coefficient approaches

using the kernel density function, such as KL method, MI can better handle non-
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linear relationships. Hence MI is used in PCAMI method because correlations

between PCs amongst brain regions are non-linear.

4.2. Effectiveness of network metrics from PCAMI method

To validate whether network metrics of both HCs’ structural MRI and PiB PET

scans from PCAMI method are effective, we compared clustering coefficient (C),

characteristic path length (L), gamma, lambda, small-world coefficient (sigma),

local efficiency (localE) and global efficiency (globalE) between PCAMI method

and methods from literature, including KL method for individual subjects, and

Pearson correlation coefficients and Partial correlation coefficients for a group of

subjects.

Table 6 shows comparison results between the present network metrics and other

previous studies at a fixed threshold of 18%. These results of other previous studies

are mainly based on classical brain network constructing method for a group of

subjects, such as Pearson correlations and partial correlations. The results of

network metrics from this study were similar to those of previous studies. In

addition, the small-world property was observed in this study in both PiB PET and

structural MRI networks, which is consistent with previous studies.

4.3. Hub regions

In the field of network science, nodes positioned to make strong contributions to

global network function are referred to as network hubs [34]. Using the present

method, 12 network hubs were identified in the PET network and 16 hubs were

identified in the structural MRI network. Almost all of the hubs have been

Table 6. Comparison of network metrics between the present study and previous studies.

Study Imaging Na C L gamma lambda sigma

Present study PET 246 0.39 1.77 1.59 1.05 1.51

structural MRI 0.37 1.76 1.47 1.04 1.41

[8] structural MRI Pearson correlation coefficients 54 - - ∼ 1.1 ∼ 1 ∼ 1.1

[7] structural MRI partial correlation coefficients 90 ∼ 0.22 ∼ 1.8 ∼ 1.4 ∼ 1 ∼ 1.4

[12] structural MRI KL divergence 90 ∼ 0.6 ∼ 2.3 ∼ 2.4 ∼ 1.2 ∼ 1.8

[30] fMRI Pearson correlation coefficients 90 ∼ 0.51 ∼ 1.9 ∼ 2 ∼ 1.1 ∼ 1.8

[33] fMRI Pearson
correlation coefficient

90 ∼ 0.3 ∼ 1.7 ∼ 1.5 ∼ 1.1 ∼ 1.4

[10] PET partial correlation analysis 90 ∼ 0.55 ∼ 2.1 - - -

[9] PET Partial Correlation Analysis 90 ∼ 0.45 ∼ 2.1 ∼ 1.4 ∼ 1.05 ∼ 1.3

a: N represents the number of network nodes.

- represents unreported information.
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previously reported as biomarkers. For example, the thalamus region was identified

as hub node of the PET network in this study. According to a recent study, the

thalamus region is a critical hub that could function to integrate heteromodal

information and maintain the modular structure of cortical functional networks

[35]. In addition, another study used diffusion imaging techniques to construct

connection maps covering the entire cortical surface, and found that provincial

hubs are members of occipital modules [36]. Similarly, the occipital region was

identified as a hub of the structural MRI network in the present study. As a whole,

these results indicate that the hub regions identified in this study are indeed

physiologically significant, and illustrate the potential application of our proposed

method, given the fact that hub regions are generally altered in various brain

disorders, such as Alzheimer’s disease and schizophrenia. Therefore, the potential

of hub regions serving as imaging markers for disease diagnosis is an interesting

topic for future research.

4.4. Potential clinical application values of PCAMI method

To evaluate potential clinical application values of the proposed method, a direct

comparison experiment between the AD group and the HC group was carried out.

The comparison results in Fig. 11 showed that differences of network metrics

between two groups were obvious, indicating that PCAMI method may be useful to

distinguish diseases in clinics. In addition, the results of Fig. 11 can also be

observed in previous literature. For instance, several scholars [5, 37, 38] supposed

that small-worldness were lost in AD group because Alzheimer-related pathology

would result in randomized brain networks [39]. A decrease clustering in the AD

group could also be found [39, 40], etc.

4.5. Limitations and further considerations

There are several issues in this study that still need to be further considered. First,

high-resolution Brainnetome Atlas was used in this study for the first time. There

are many other brain atlases available, such as AAL template and Harvard-Oxford

atlas et al. Whether a different atlas would have an impact on the results is still not

known. In the future, a direct comparison among various atlases is needed.

Second, PCA is a statistical procedure that uses an orthogonal transformation to

convert original data into a set of linearly uncorrelated variables called PCs. Same

PCs (e.g., 1st PC) amongst different brain regions was equal. Hence MI method

can be used to analyze PCs. Nevertheless, the significance of different PCs within

same brain regions was unclear. It is still unknown how much intensity, shape,

texture and gradient features are included in each PC, and what the weight

functions of features were in each PC. More studies are needed to further
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investigate the meaning of the features, as well as relationships of different PCs

within same brain regions.

Third, and most importantly, the PCA analysis can only be performed on a group

of subjects. Therefore, the PCAMI method proposed in this study did not fully

achieve the goal of constructing an individual-level brain network, and there is still

much improvement needed in future work.

Fourth, although both structural MR and PiB PET image data were analyzed,

whether the resolutions of different imaging modalities will affect calculation

efficiency of construction brain network needs further study. Finally, we need to

further investigate potential clinical application value of the proposed method to

distinguish different brain disorder diseases (such as Alzheimer’s disease and

Parkinson’s disease dementia) in different imaging modalities.

5. Conclusion

In summary, the current study proposed a new method that was based on PCA for

feature extraction and MI for connection definition, to explore the individual-level

brain network using PiB PET and structural MR images. There are a total of five

steps in the new method: image preprocessing, extraction of the brain regions by

priori atlas, feature extraction based on principal components analysis, and

individual-level brain network construction based on mutual information and

network analysis. Overall, the new method demonstrates considerable consistency

and robustness, and would provide a new perspective in understanding the

functional and structural connectivity of the human brain.
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